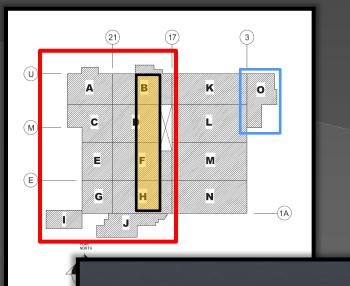
PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

WEST FUALA PLANT EXPANSION


BREADTH TOPICS

- RENEWABLE ENERGY/ELECTRICAL BREADTH
- STRUCTURAL IMPACT ANALYSIS

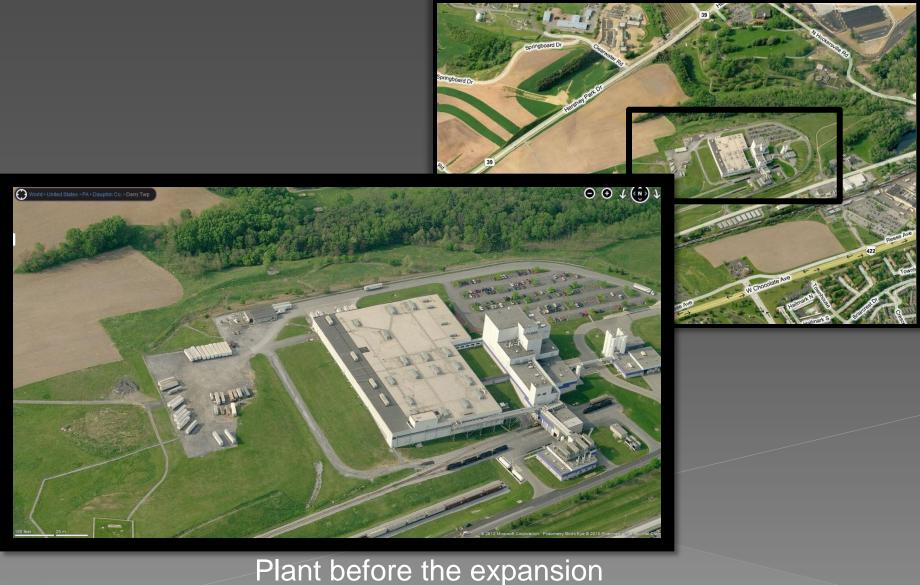
PROJECT BACKGROUND

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

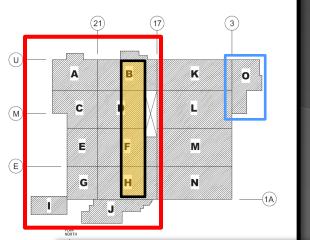
Building Name: Location:

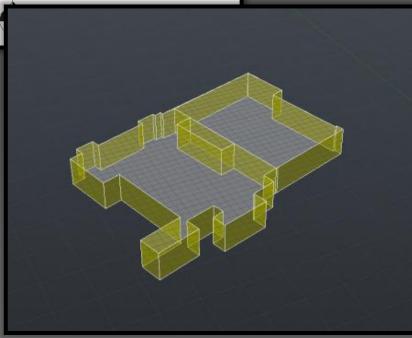

Gross Building Area: 350,545 SF Number of Stories: 1/2 Basement + First floor + Mezzanine **Building Type: Food processing and packaging plant**


Contractor: Turner Construction Company Project Delivery Method: Design-Bid-Build GMP contract: \$83 Million Construction Dates: June 2010 – February 2012

West Expansion

Confidential – West Fuala Expansion Confidential – Harrisburg, PA





JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT

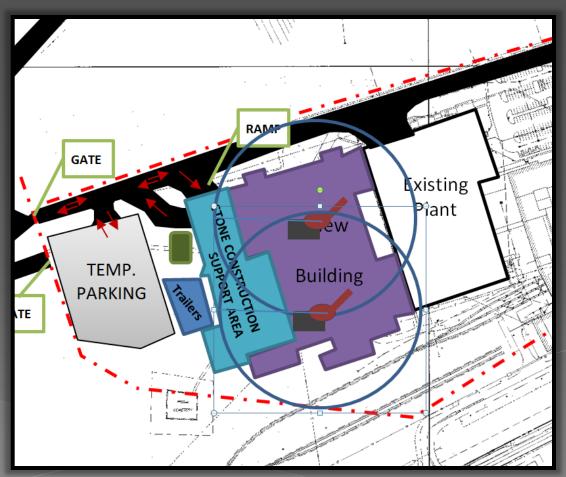
PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

West Expansion

PROJECT BACKGROUND

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA


Structural System

Floor:	Precast concrete
anine:	Steel
0:	CMU walls

Lighting System

650 Volt-Amperes

- Mobilization
- Sitework
- Foundation
- Erection of Envelope
- Building Water-tight and fitouts

Construction Phases

Erection of Envelope Phase

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Issue

- 100 Years
- IV. ANALYSIS #3: Structural Modification Energy issue High energy demand
 - Many Structural trades
 - Congestion in Area O

PROJECT BACKGROUND

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Thesis Proposal

•Energy Analysis

- •Photovoltaic Panels
 - Breadth
- •Structure modification to Precast Concrete Mezzanine • Breadth
- •Precast Prefabrication of Bathroom walls in Area O

Type of Analysis

- Promote a better long term sustainable design
- Generate Sustainable Energy
- Modify Structure
- Utilizing prefabrication to reduce congestions

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
 - I. <u>Information</u>
 - II. Energy Model
 - III. Solar Analysis
 - I. Solar Studies
 - II. Ecotect Solar Radiation
 - III. Propose Solar Design Change
 - IV. Effect on Energy model
 - IV. Recommendations
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Energy Analysis

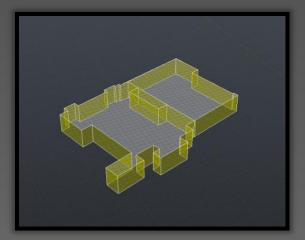
- Produces an Energy model
- Used throughout design stage to assess the effect of design changes on the energy usage

•AutoDesk - Project Vasari •BIM Model

ENERGY ANALYSIS

Tools

Autodesk // Labs_ Exploring new approaches to design technology


JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Energy model

- 1. Create or import building model
- 2. Import parameters
- 3. Run Energy model Analysis
- 4. Analyze BIM model

Parameters:

- Manufacturing
- Harrisburg, PA
- 24/7 facility
- One HVAC system

PRESENTATION OUTLINE:

- I. PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
 - I. <u>I</u>nformation
 - II. <u>Energy Model</u>
 - III. Solar Analysis
 - I. Solar Studies
 - II. Ecotect Solar Radiation
 - III. Propose Solar Design Change
 - IV. Effect on Energy model
 - IV. Recommendations
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

BIM - Energy Analysis Energy model

Information produced:

- Building performance Factor
- Energy Use intensity
- Life Cycle Energy Use
- Renewable Energy Potential
- Emissions
- Annual Energy Use
- Et cetera

μ	
Building	Locatio
lin	Weathe
g F	Outdoo
e	Floor A
9erformance	Exterio
3 -	Averag
an	People
Ce	Exterio
7	Electric
čt –	Fuel Co
actors	

ENERGY ANALYSIS

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Energy Model Report

tion:	Hershey, PA, USA
her Station:	53158
oor Temperature:	Max: 82°F/Min: -10°F
Area:	140,337 sf
ior Wall Area:	127,669 sf
age Lighting Power:	1.30 W / ft ²
le:	326 people
ior Window Ratio:	0.20
rical Cost:	\$0.09 / kWh
Cost:	\$1.03 / Therm

Renewable Energy Potentia

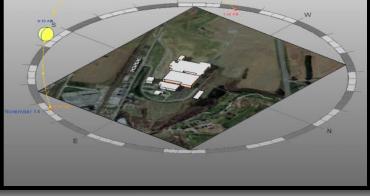
Roof Mounted PV System (Low efficiency):
Roof Mounted PV System (Medium efficiency):
Roof Mounted PV System (High efficiency):
Single 15' Wind Turbine Potential:
*PV efficiencies are assumed to be 5%, 10% a systems

789,717 kWh / yr

1,579,434 kWh / yr

2,369,151 kWh / yr

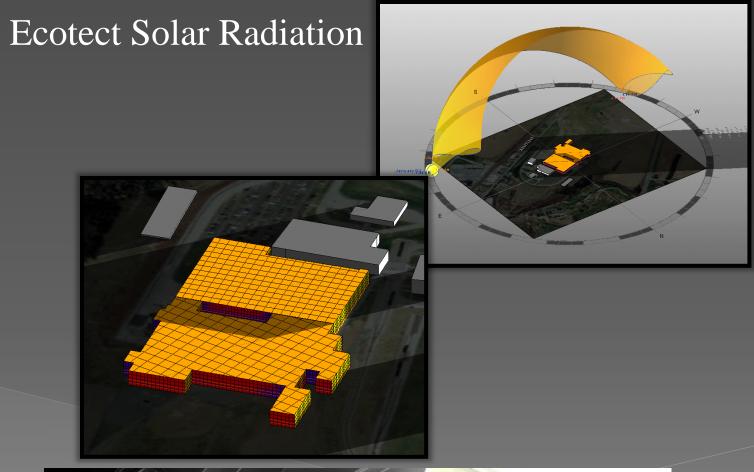
2,969 kWh / yr


and 15% for low, medium and high efficiency

PRESENTATION OUTLINE:

- I. PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
 - I. <u>I</u>nformation
 - II. Energy Model
 - III. <u>Solar Analysis</u>
 - I. <u>Solar Studies</u>
 - II. Ecotect Solar Radiation
 - III. Propose Solar Design Change
 - IV. Effect on Energy model
 - IV. Recommendations
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

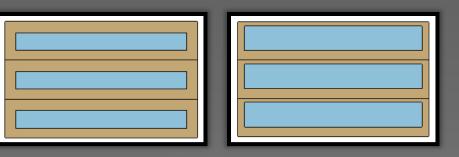
Solar Studies

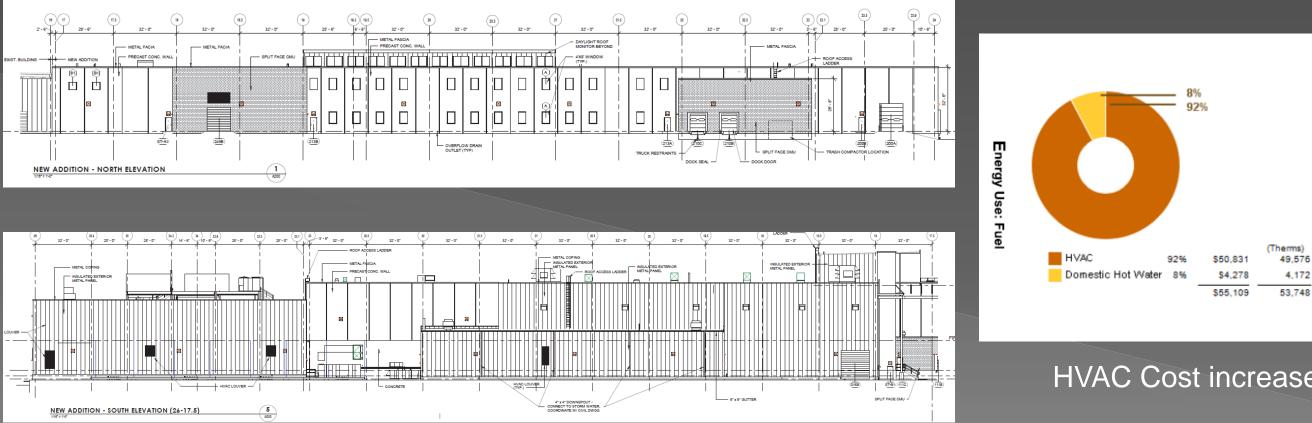

Nov 14th, 2012

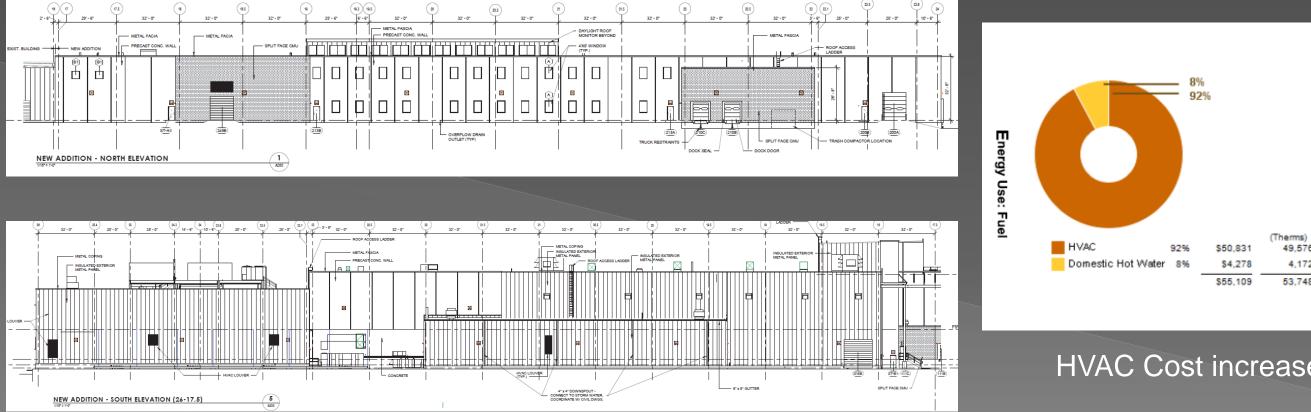
ENERGY ANALYSIS

Solar Analysis

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

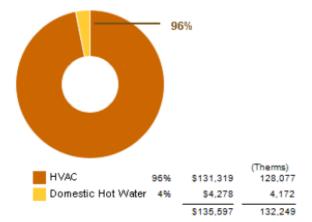



PRESENTATION OUTLINE:


- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
 - I. <u>I</u>nformation
 - II. Energy Model
 - III. <u>Solar Analysis</u>
 - I. Solar Studies
 - II. Ecotect Solar Radiation
 - III. <u>Propose Solar Design Change</u>
 - IV. Effect on Energy model
 - IV. Recommendations
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Example of design change from Solar Analysis

Proposed Design Changes: • Glazing from 20% to 40%


ENERGY ANALYSIS

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Energy Model Report

HVAC Cost increases from \$55,000 to \$131,000

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
 - I. <u>I</u>nformation
 - II. Energy Model
 - III. Solar Analysis
 - I. Solar Studies
 - II. Ecotect Solar Radiation
 - III. Propose Solar Design Change
 - IV. Effect on Energy model
 - IV. <u>Recommendations</u>
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Conclusion:

- No cost

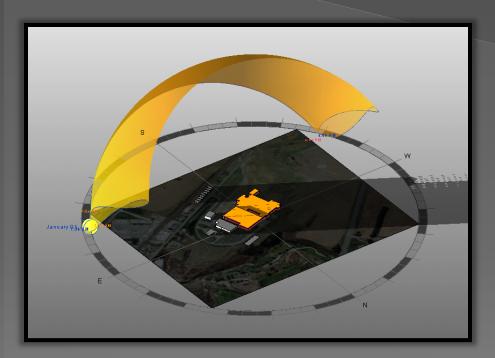
- concepts

Recommendation: • Project Team utilize this tool to enhance and produce a more sustainable design in the long run

ENERGY ANALYSIS

PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Energy Analysis


Does not affect schedule

• A more sustainable long-term design High possibility of cost reduction • Up to 25% of Energy requirements at day through lighting

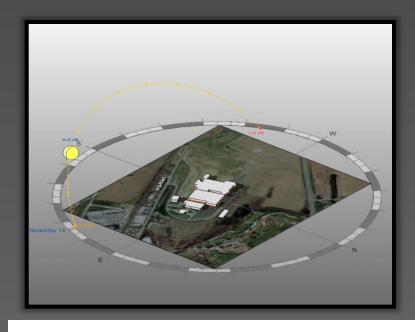
JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
 - I. Solar Analysis
 - II. PV systems
 - III. Breadth:
 - Electrical Systems Analysis
 - II. Electric output of PV
 - IV. Layout
 - V. Financial Analysis
 - VI. Recommendation
- IV. ANALYSIS #3: Structural Modification
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Problem Id:

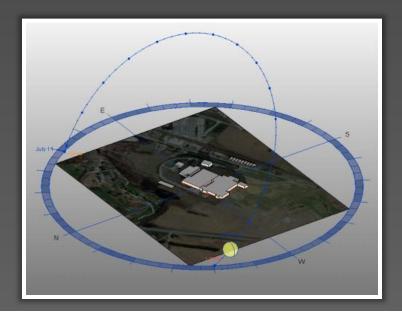
Proposal:


PHOTOVOLTAICS

PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Incorporating Photovoltaic systems

High Electric energy Usage No sustainable systems incorporated Great potential for Renewable Energy


Generate sustainable energy Determine Feasibility of a PV system

Roof Mounted PV System (Low efficiency) Roof Mounted PV System (Medium efficient Roof Mounted PV System (High efficiency Single 15' Wind Turbine Potential: *PV efficiencies are assumed to be 5%, 10% and 15% for low, medium and high efficiency

systems

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT

):	789,717 kWh / yr	
ency):	1,579,434 kWh / yr	
/):	2,369,151 kWh / yr	
	2,969 kWh / yr	_
		_

PRESENTATION OUTLINE:

 I. PROJECT BACKGROUND II. ANALYSIS #1: Energy Analysis <i>III. ANALYSIS #2: Photovoltaic Array</i> 	Solar Sky Giddied Systems	Astronergy	Sharp Grid
I. <u>Solar Analysis</u> II. <u>PV systems</u> III. Breadth:	Array Size Ideal / Actual Watts	19,200/17,448	18,800/ <mark>16,944</mark>
I. Electrical Systems AnalysisII. Electric output of PV	Monthly Output	up to 2,617 kWh	up to 2,542 kWh
IV. LayoutV. Financial AnalysisVI. Recommendation	Number of Solar Panels	80 panels	80 panels
IV. ANALYSIS #3: Structural Modification	Watts	240	235
V. ANALYSIS #4: Bathroom PrefabricationVI. LESSONS LEARNED	Price	\$37,889	\$42,110
VI. LESSONS LEARNED VII. ACKNOWLEDGEMENTS	Price Per Watt	\$1.97	\$2.24

Project location: Harrisburg, PA Latitude: N 40° 22' Longitude: W 76° 85' **Optimum Orientation:** South facing side **Optimum Tilt Angle:** Summer: 25°15' Winter: 55° (latitude $\pm 15^{\circ}$) Sun Hours Per Day: 4.6

PHOTOVOLTAICS

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Solar Analysis

PRESENTATION OUTLINE:

 I. PROJECT BACKGROUND II. ANALYSIS #1: Energy Analysis <i>III. ANALYSIS #2: Photovoltaic Array</i> 	Solar Sky Giddied Systems	Astronergy	Sharp Grid
I. Solar Analysis II. PV systems III. <u>Breadth:</u>	Array Size Ideal / Actual Watts	19,200/17,448	18,800/ <mark>16,944</mark>
I. <u>Electrical Systems Analysis</u>II. <u>Electric output of PV</u>	Monthly Output	up to 2,617 kWh	up to 2,542 kWh
IV. LayoutV. Financial AnalysisVI. Recommendation	Number of Solar Panels	80 panels	80 panels
IV. ANALYSIS #3: Structural Modification	Watts	240	235
V. ANALYSIS #4: Bathroom PrefabricationVI. LESSONS LEARNED	Price	\$37,889	\$42,110
VI. LESSONS LEARNED VII. ACKNOWLEDGEMENTS	Price Per Watt	\$1.97	\$2.24

Photovoltaic Energy output: 1 set of 80 Astronergy = 17,448 Watts = 2.68%10 Sets of 80 Astronergy = 174,480 Watts = 26.84 %

PHOTOVOLTAICS

Electric Energy Output (Breadth)

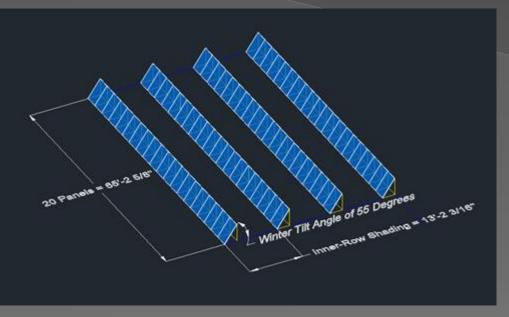
Lighting System Energy Usage = 650 Volt-Amperes

PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

> National Renewable Energy Energy Lab Photovoltaic system calculator

Location= Harrisburg, PA DC Rating =174 kW Photovoltaic System (10 sets of 80 Astronergy) Cost of electricity = 14.3 ¢/kWh

Report: AC Rating: Annual AC Energy produced: Annual Energy Value Savings:

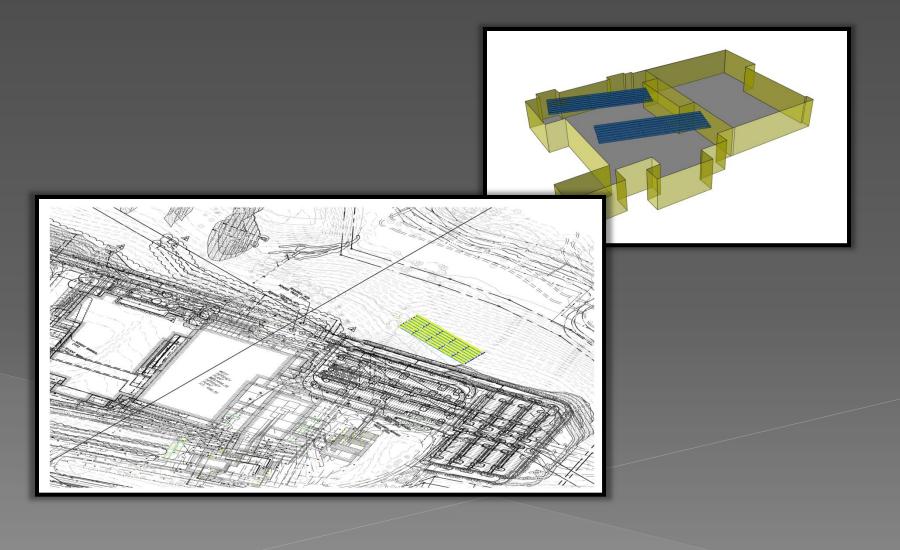

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT

134.4 kW = 20% of Lighting System 206,937 kWh \$29,592

PRESENTATION OUTLINE:

- I. PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
 - I. Solar Analysis
 - II. PV systems
 - III. Breadth:
 - I. Electrical Systems Analysis
 - II. Electric output of PV
 - IV. <u>Layout</u>
 - V. Financial Analysis
 - VI. Recommendation
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Layout of PV Panels



PHOTOVOLTAICS

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Site Layout

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis II.
- III. ANALYSIS #2: Photovoltaic Array
 - I. Solar Analysis
 - II. PV systems
 - III. Breadth:
 - Electrical Systems Analysis
 - II. Electric output of PV
 - IV. Layout
 - V. <u>Financial Analysis</u>
 - VI. Recommendation
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

System Cost per Watt: Cost of Astronergy System= \$1.97 per DC watt Gross Cost of installation = \$5 per DC watt (U.S. Dept of Energy)

Cost of System = \$6.97 per DC watts Harrisburg, PA *Electric rate:* \$0.143/kWh

Final Price of 10 Sets of 80 Astronergy Panels = \$8,771,723

PHOTOVOLTAICS

PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Financial Analysis

Solar System Calculator

Table 8.8.2:	Description	Monetary Values (\$)	COST
Estimated System Cost	Assumed Installation Gross Cost		\$8,771,723
FINANCIAL INCENTIVES	Pennsylvania SREC Market	\$ 3,129,987	
	PA State SunShine Rebate	\$ 52,500	
	Federal Tax Credit	\$ 2,631,517	
TOTAL SAVINGS		(\$ 2,957,719)	
ESTIMATED NET COST AT INSTALLATION:			\$ 6,087,706

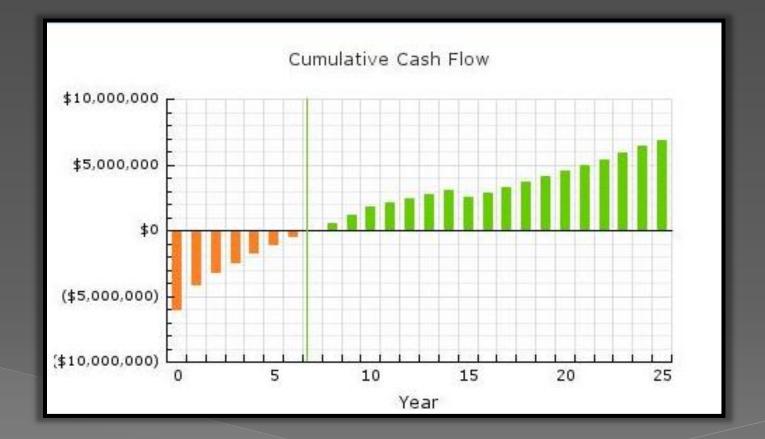
JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis II.
- III. ANALYSIS #2: Photovoltaic Array
 - I. Solar Analysis
 - II. PV systems
 - III. Breadth:
 - Electrical Systems Analysis
 - II. Electric output of PV
 - IV. Layout
 - V. <u>Financial Analysis</u>
 - VI. Recommendation
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

System Cost per Watt: Cost of Astronergy System= \$1.97 per DC watt Gross Cost of installation = \$5 per DC watt (U.S. *Dept of Energy*)

Cost of System = \$6.97 per DC watts Harrisburg, PA *Electric rate:* \$0.143/kWh


Final Price of 10 Sets of 80 Astronergy Panels = 6,087,706

PHOTOVOLTAICS

PENN STATE AE SENIOR CAPSTONE PROJECT

Financial Analysis

Solar System Calculator

Payback Period = 7th Year

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT ADVISOR: DR. CHIMAY ANUMBA

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
 - I. Solar Analysis
 - II. PV systems
 - III. Breadth:
 - Electrical Systems Analysis
 - II. Electric output of PV
 - IV. Layout
 - V. Financial Analysis
 - VI. <u>Recommendation</u>
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

- 20% of lighting electric demand generated \$29,591 Annual Savings
- Payback in 7 Years
- Large available area for more Panels

Recommendations:

PHOTOVOLTAICS

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Final Conclusion

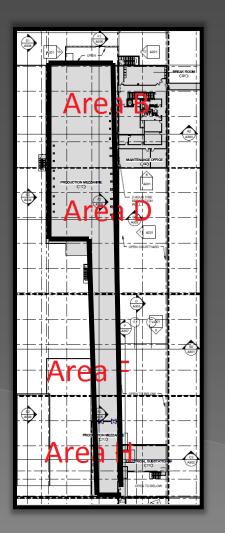
• Owner should consider Incorporating Solar PV-Panels

• Limited budget by government for incentives

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
 - I. Breadth
 - I. Steel Loads
 - II. Precast Concrete Loads
 - III. Precast Concrete Column

Design


- II. Financial
- III. Schedule
- IV. Recommendation
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

PRECAST CONCRETE

Problem Identification:

•Precast for Food plants than Steel - FDA •A lot of Precast concrete work •Mezzanine only major steel task •Many Trades

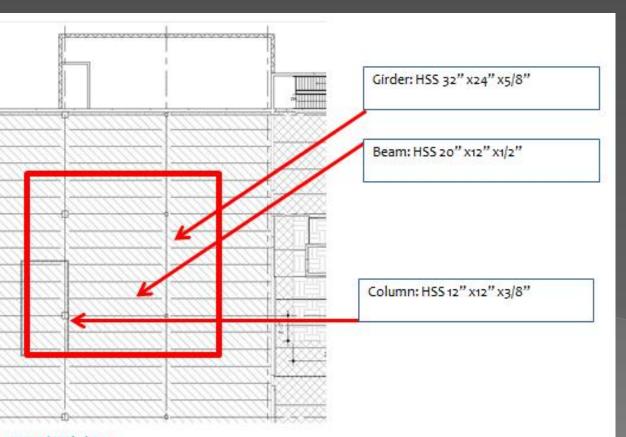
Research Proposal: Study the viability and changes from changing Mezzanine from Steel to Precast

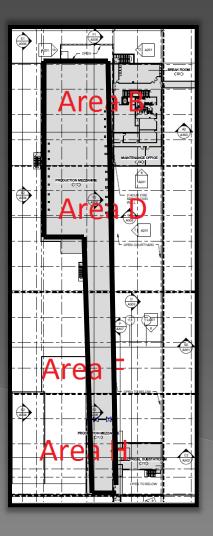


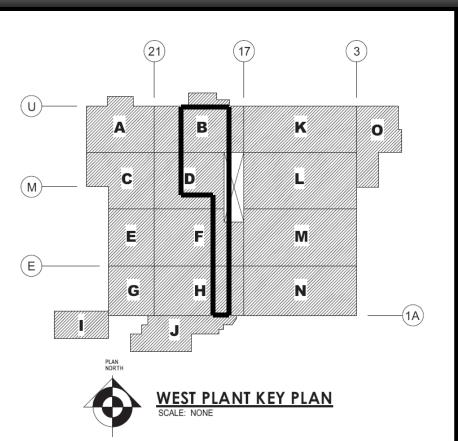

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
 - I. Breadth
 - I. Steel Loads
 - II. Precast Concrete Loads
 - III. Precast Concrete Column Design
 - II. Financial
 - III. Schedule
 - IV. Recommendation
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

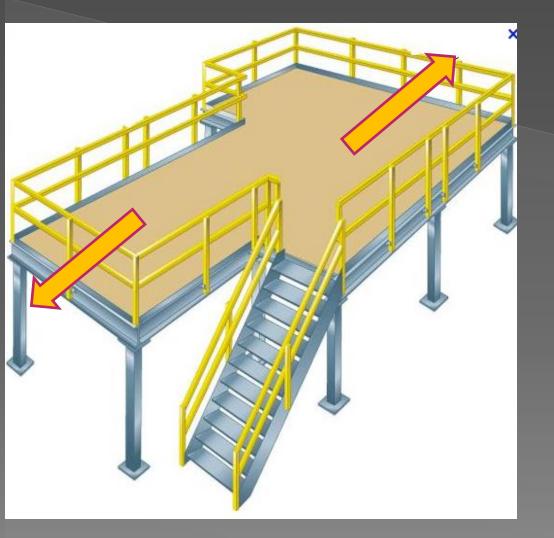

Current Steel System





PRECAST CONCRETE

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA



PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
 - I. <u>Breadth</u>
 - I. <u>Steel Loads</u>
 - II. Precast Concrete Loads
 - III. Precast Concrete Column Design
 - II. Financial
 - III. Schedule
 - IV. Recommendation
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Current Steel System

PRECAST CONCRETE

Breadth Steel load Calculation

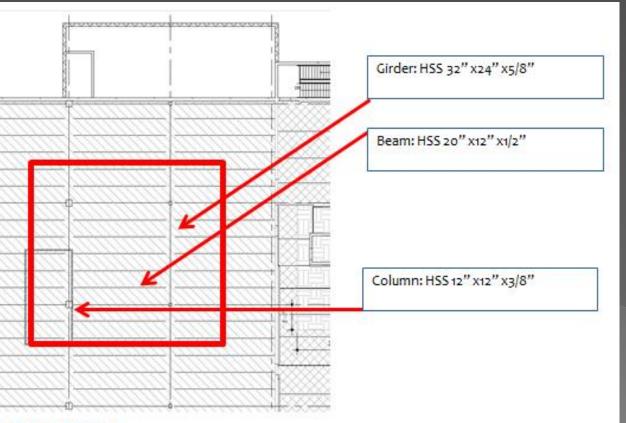


Image 9.2.1: Current Typical Bay

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Table 9.2.1: Current System	Name	Weight	Span
Columns	HSS 12" x 12" x 3/8"	78.52	17 feet
Girders	HSS 32" x 24" x 5/8"	225.8	32 feet
Beams	HSS 20" x 12" x 1/2'	103.3	32 feet

Table 9.2.3	
Columns	
Girder	
Beams	
6" Deck Self	
Weight	

Loads 607 kips 17.62 klf 2.8 klf 90 psf

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
 - I. <u>Breadth</u>
 - I. Steel Loads
 - II. <u>Precast Concrete Loads</u>
 - III. <u>Precast Concrete Column</u> Design
 - II. Financial
 - III. Schedule
 - IV. Recommendation
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Proposed precast System Loads

Table 9.2.3	Loads
Columns	1577 kips
Girder	42.56 klf
Beams	4.3 klf
Flat Slab	275 psf
Self Weight	

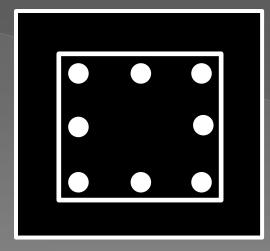
f'c (ksi)=4 Fy (ksi) = 608 No. 18 (US) AS = 32 sq.inSteel ratio = 0.08

PRECAST CONCRETE

Breadth Work Precast Concrete Column Design

12"x12" HSS 20" x 20" Precast Concrete

The Column will have to have the following properties:


JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Summary of loads

Column Designed can carry = 1730 kips Required Load to be Carried = 1577 Kips

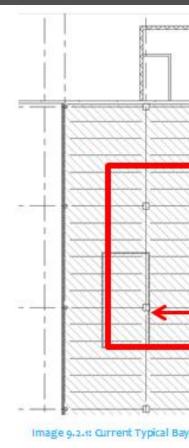
> Column Design can Carry intended Load! 1730 kips > 1577 kips

Tie = Rectangular Tie 3 Bars in 20 in line Loads = 1730 kips

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis II.
- III. ANALYSIS #2: Photovoltaic Array

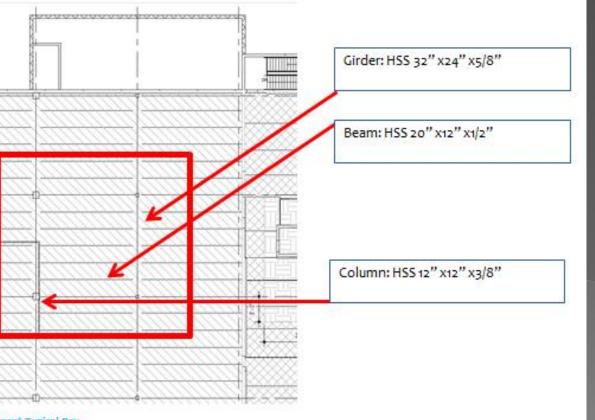
IV. ANALYSIS #3: Structural Modification


- I. Breadth
 - Steel Loads
 - II. Precast Concrete Loads
 - III. Precast Concrete Column

Design

- II. <u>Financial</u>
- III. Schedule
- IV. Recommendation
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Cost of Both Systems (Nitterhouse concrete & RS Means)


Members in a Typical Bay	Description	Cost (\$)	No. of units	Total Cost (\$)
Girders	HSS 32" x 24" x 5/8"	310 /ft.	2	\$19,840
	2'-0" wide x 3'-6" deep	185 /ft.		\$11,840
Beams	HSS 20" x 12" x 1/2'	201 /ft.	7	\$45,024
	1'-0" wide x 2'-0" deep	160 /ft.		\$35,840
Slabs Cast in Plac concrete Precast Concrete slab	Cast in Place concrete	25 /sqft	1	\$25,600
	Concrete	20 /sqft		\$20,480
Columns	HSS 12" x12" x 3/8"	259 /ft.	1	\$9,522
	Precast Concrete 20'' x 20''	200 /ft.		\$3,600

PRECAST CONCRETE

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Comparison of Systems costs

System	Cost of erecting a typical bay	Cost per sqft	Cost of Entire Mezzanine (32,251 SF)
Precast Concrete	\$71,760	\$70.10	\$ 2,260,795.10
Steel	\$99,986	\$97.64	\$ 3,148,987.64

Total Savings = 888,193 = 28.21%

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
 - I. Breadth
 - I. Steel Loads
 - II. Precast Concrete Loads
 - III. Precast Concrete Column

Design

- II. Financial
- III. <u>Schedule</u>
- IV. Recommendation
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Using RS Means

Member	Quantity in a typical bay	Total quantity	Daily Output	Number of days
Girders	2	66	16	4.125
Beams	7	231	24	9.625
Columns	1	33	144	1
Slab	3	99	18	5.5

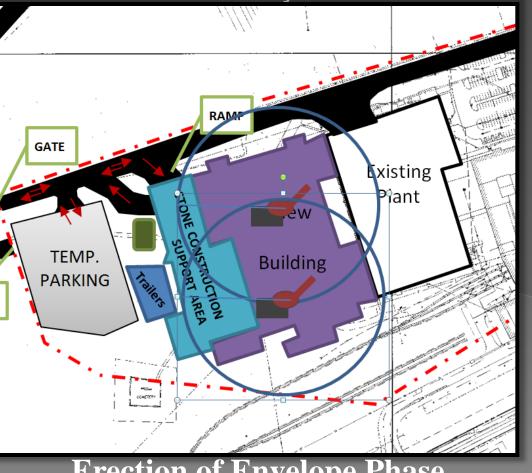
Duration for Entire Bay:

21 days with 1 crane 11 days with 2 cranes

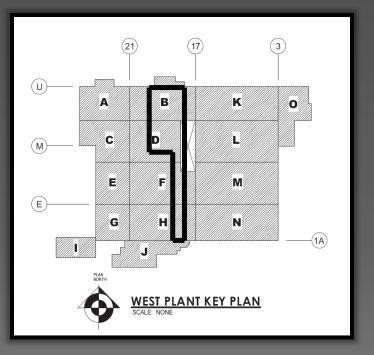
PRECAST CONCRETE

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Using Current Schedule and durations


	Duration for an
	area
Girder	3 days
Beam	3 days
Column	2 days
Slab	5 days

13 days for an entire Area


Mezzanine is Considered 2.5 times a typical Area

32.5 days

Schedule Analysis

Erection of Envelope Phase

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
 - I. Breadth
 - I. Steel Loads
 - II. Precast Concrete Loads
 - III. Precast Concrete Column

Design

- II. Financial
- III. <u>Schedule</u>
- IV. Recommendation
- ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Using RS Means

Member	Quantity in a typical bay	Total quantity	Daily Output	Number of days
Girders	2	66	16	4.125
Beams	7	231	24	9.625
Columns	1	33	144	1
Slab	3	99	18	5.5

Duration for Entire Bay:

21 days with 1 crane 11 days with 2 cranes

More Realistic Approach = 32.5 Days

PRECAST CONCRETE

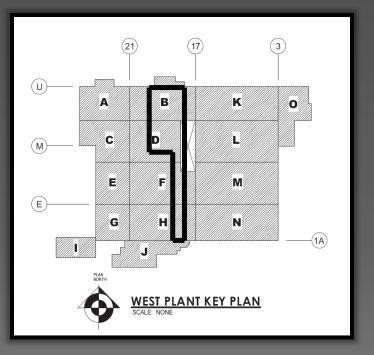
Schedule Analysis

Summary of Schedule Analysis

Steel Mezzanine Duration = 35 Days

Minor reduction in Schedule

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA


Using Current Schedule and durations

	Duration for an
	area
Girder	3 days
Beam	3 days
Column	2 days
Slab	5 days

13 days for an entire Area

Mezzanine is Considered 2.5 times a typical Area

32.5 days

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
 - Breadth
 - I. Steel Loads
 - II. Precast Concrete Loads
 - III. Precast Concrete Column

Design

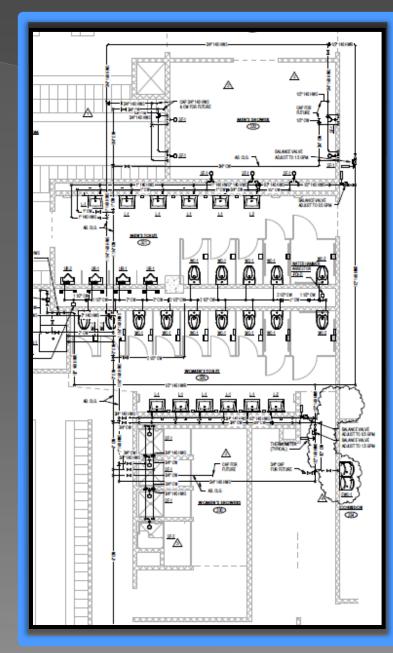
- II. Financial
- III. Schedule
- IV. <u>Recommendation</u>
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

- \$ 888,192.54 cost reduction
- Minor Schedule Reduction
- 28 day Curing wait of C.I.P. concrete eliminated
- Less trades on Site
- Substantially Heavier structural System

- Owner should consider Changing Structure from Steel to
- Precast Concrete
- Potential Cost savings and Schedule Reductions
- Better design for a food plant

PRECAST CONCRETE

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

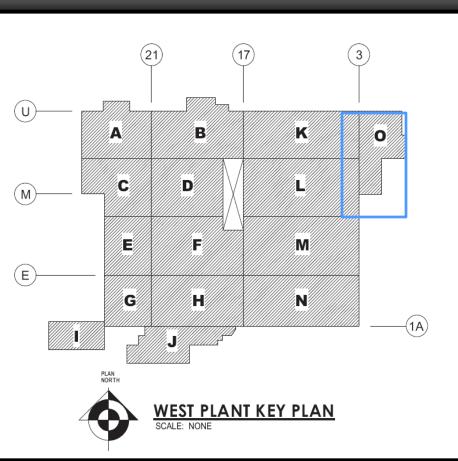

Final Conclusion

Recommendations:

System	Cost of erecting a typical bay	Cost per sqft	(32,251 SF)	Duration
Precast Concrete	\$71,760	\$70.10	\$ 2,260,795.10	32.5 Days
Steel	\$99,986	\$97.64	\$ 3,148,987.64	35 Days

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
 - What to Prefabricate?
 - II. Assumptions & Parameters
 - I. Precast concrete Wall
 - II. On-site prefabrication & Assembly
 - III. Logistics, Hoisting, Connecting
 - IV. Schedule & GC impact
 - V. Recommendation
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS


PREFABRICATION

PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Problem Identification:

 Many Tasks taking place at the same time - Site Congestion • CMU Walls for bathrooms in Area O A lot of Precast concrete work for Project

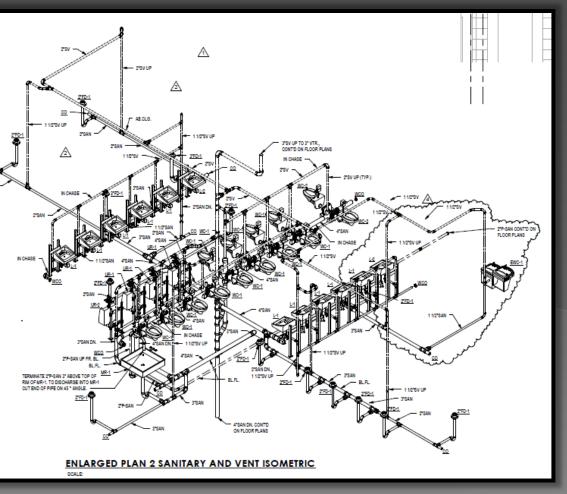
Research Proposal: Determine systems that could be prefabricated. Reduce Site Congestion •Cost and Schedule Impacts

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- I. PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
 - I. <u>What to Prefabricate?</u>
 - II. Assumptions & Parameters
 - I. Precast concrete Wall
 - II. On-site prefabrication & Assembly
 - III. Logistics, Hoisting, Connecting
 - IV. Schedule & GC impact
 - V. Recommendation
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

What will be Prefabricated:


Bathroom Walls as precast concrete with Piping and electric rough-ins

> Bathroom finishes Prefabrication

PREFABRICATION

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

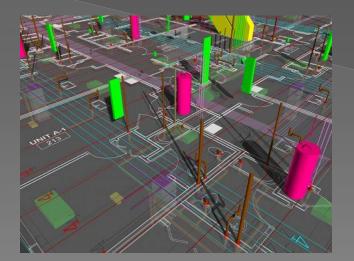
What to Prefabricate?

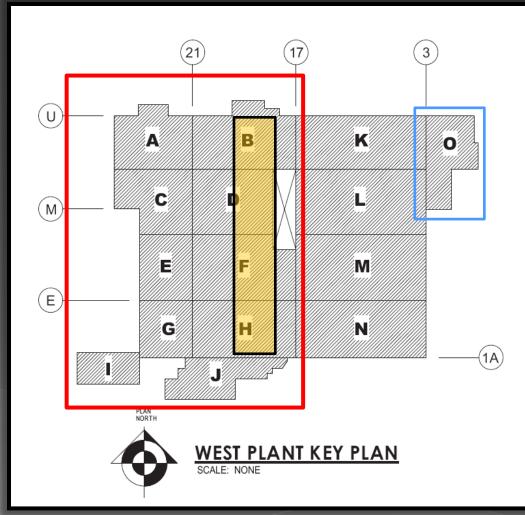
PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
 - What to Prefabricate?
 - II. <u>Assumptions & Parameters</u>
 - I. <u>Precast concrete Wall</u>
 - II. <u>On-site prefabrication &</u> <u>Assembly</u>
 - III. Logistics, Hoisting, Connecting
 - IV. Schedule & GC impact
 - V. Recommendation
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Precast Concrete Bathroom prefabrication

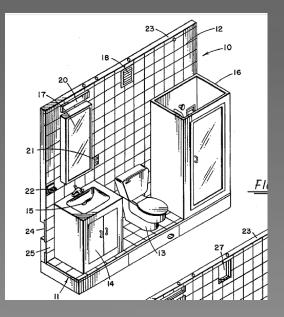
The same methods used for the current precast concrete envelope would be used for the precast bathroom walls:


•Procurement •Prefabrication •Transportation •Hoisting •Connecting


PREFABRICATION

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Assumptions for proposed precast walls:



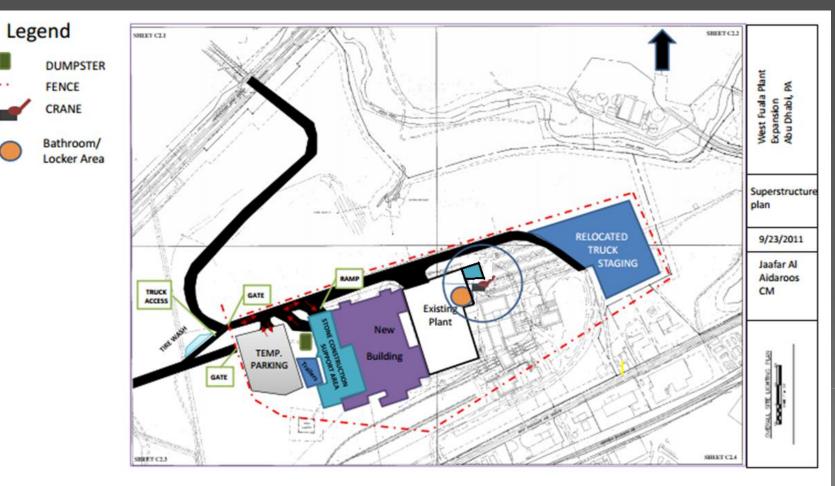
PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
 - I. What to Prefabricate?
 - II. Assumptions & Parameters
 - I. Precast concrete Wall
 - II. On-site prefabrication & Assembly
 - III. Logistics, Hoisting, Connecting
 - IV. Schedule & GC impact
 - V. Recommendation
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Bathroom Finishings:

 Toilet Paper Dispenser •Paper Towel Dispenser Sanitary Napkin Disposal •24"x26" mirror •Soap dispenser

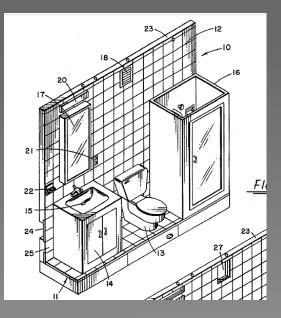
PREFABRICATION


On-Site Prefabrication

Walls and finishes assembled at site and then hoisted into place

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

- -

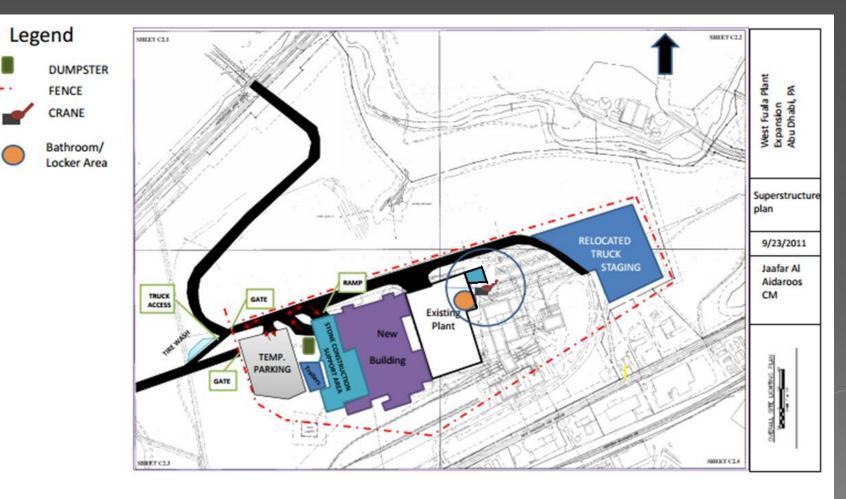

Site Logistics

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis II.
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
 - I. What to Prefabricate?
 - II. Assumptions & Parameters
 - I. Precast concrete Wall
 - II. On-site prefabrication & Assembly
 - III. Logistics, Hoisting, Connecting
 - IV. Schedule & GC impact
 - V. Recommendation
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Bathroom Finishings:

 Toilet Paper Dispenser •Paper Towel Dispenser •Sanitary Napkin Disposal •24"x26" mirror •Soap dispenser


PREFABRICATION

Hoisting Prefabricated units

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA Site Logistics

- -

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis
- ANALYSIS #2: Photovoltaic Array III.
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
 - What to Prefabricate?
 - II. Assumptions & Parameters
 - I. Precast concrete Wall
 - II. On-site prefabrication & Assembly
 - III. Logistics, Hoisting, Connecting
 - IV. <u>Schedule & GC impact</u>
 - V. Recommendation
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Current Schedule

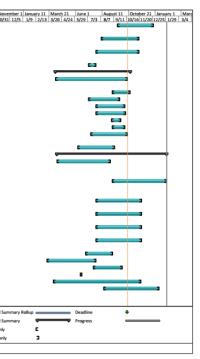
Critical Path task

Task	Early Start	Early Finish
Install Masonry Walls	22 Jun	07 Sept
In-Wall plumbing	24 Jun	19 July
In-Wall Electric Rough-in	27 Jun	07 Sept
HVAC Main Duct Work	01 July	07 Sept
Plumbing Insulation	06 July	07 Sept
Piping and ductwork connections	25 July	07 Sept

PREFABRICATION

Schedule impact:

Current Duration: 45 days of construction for CMU walls


Using RS Means & actual Project Schedule Proposed system Duration: 2 days for hoisting precast walls

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

General Conditions Impact

GC Calculated to be \$992,000 over 22 Months Around 43 Days of Project Schedule Saving = \$67,500 of GC Savings

D	0	Task Name				Duration	Start	Finish		June 11	August 21	
188	•	(E H 0) Ar	included and the second second	is &Storm Piping; Plun	bing Pronch	70 days	Wed 0/21/11	Tue 12/27/11	5/9	6/13 7/18	8/22 9/2	6 10/
100				tures and Trim: In-wal		/U days	wed 9/21/1	11 Tue 12/2//11				
189				s &Storm Piping; Plun		75 days	Mon 8/8/11	Fri 11/18/11				
				tures and Trim; In-wall								
190		(P - U) Area	a: Install Roof Drains	&Storm Piping; Plumb	ing Branch	85 days	Mon 7/25/11	Fri 11/18/11				
		Runouts; B	Branch Insulation; Fix	tures and Trim; In-wal	plumbing							
191		Install & Co	Install & Connect DW Booster Pumps, CA Dryer & Accessories			15 days	Tue 7/5/11	Mon 7/25/11				
192		HVAC"				144 days	Thu 4/7/11	Tue 10/25/11				
193			Basement: Hangers & Pipe Rack Support, Install utilities on Pipe Racks Piping & DuctWork; Unit cooler Pipe Connections; branches			139 days	Thu 4/7/11	Tue 10/18/11				
194		(A - E): HV/	AC Pipe Mains & Bra	nches + Insulation		35 days	Wed 9/7/11	Tue 10/25/11				
195		UTB: HVAC	C Pipe Mains & Branc	hes + Insulation		61 days	Tue 7/5/11	Tue 9/27/11				
196		(E - H.9): H	IVAC Pipe Mains & Br	anches + Insulation		57 days	Mon 7/25/11	Tue 10/11/11				
197		(H.9 - P): H	IVAC Pipe Mains & B	anches + Insulation		59 days	Mon 7/25/11	1 Thu 10/13/11				
198		Install Unit	t heaters, In-Wall exh	aust Fans,		20 days	Mon 9/5/11	Fri 9/30/11				
199			uctWork Connection			25 days	Wed 9/7/11	Tue 10/11/11				
200			onnect heat Exchang nits, Exhaust Fans	ers, Cooling Tower, Blo	ower Coil unit,	72 days	Mon 7/11/11	Tue 10/18/11				
201		Ductwork I	Mains & Branches			72 days	Mon 6/6/11	Tue 9/13/11				
202		Electrical Sys	tems"			212 days	Mon 4/11/1	1 Tue 1/31/12				
203			Devices; Panel & Tran	Supports; Lighting & I sformer Terms; Unit C		105 days	Mon 4/11/11	l Fri 9/2/11				
204			Devices; Panel & Tran	orts; Lighting & Power sformer Terms; Unit C		105 days	Wed 9/7/11	Tue 1/31/12				
205			ctrical Hangers & Sup nel & Transformer Te	ports; Lighting & Pow erms: Light fixtures	er Conduit +	90 days	Mon 7/25/11	Fri 11/25/11				
206			ectrical Hangers & Su nel & Transformer Te	pports; Lighting & Pov erms; Light fixtures	wer Conduit +	90 days	Mon 7/25/11	Fri 11/25/11				
207			lectrical Hangers & S nel & Transformer Te	upports; Lighting & Po erms; Light fixtures	wer Conduit +	90 days	Mon 7/25/11	Fri 11/25/11				
208			ctrical Hangers & Sup nel & Transformer Te	ports; Lighting & Powe erms; Light fixtures	er Conduit +	90 days	Mon 7/25/11	Fri 11/25/11				
209		Parking Lot	ts: Site Light fixtures,	U.Power / Light		54 days	Mon 6/27/11	1 Thu 9/8/11				
210		Masonry				95 days		Mon 7/25/11				
211		Landscaping				57 days	Mon 7/18/11	Tue 10/4/11				
212			nent Installation			5 days		Fri 6/17/11				
213		Utility Shutdown				169 days	Fri 4/1/11	Wed 11/23/11				
214		Equpiment/ Sys	tem Start-up & Com	missioning		108 days	Mon 8/15/11	1 Wed 1/11/12				
215										1		
216												
			Task		Project Summary	φ=	Ŷ	Inactive Milestone		\$	Ma	inual Su
Project	- Sche	dule 2	Split		External Tasks	_		Inactive Summary		0	— Ma	inual Su
		0/19/11	Milestone		External Milestor			Manual Task		-		
			Summary	-	External Milestor	e •				-		Start-only Finish-only
		I	summary	· · · · · · · · · · · · · · · · · · ·	inactive Task			Duration-only			Fini	.sn-only

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
 - I. What to Prefabricate?
 - II. Assumptions & Parameters
 - I. Precast concrete Wall
 - II. On-site prefabrication & Assembly
 - III. Logistics, Hoisting, Connecting
 - IV. Schedule & GC impact
 - V. <u>Recommendation</u>
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Final Conclusion of prefabrication

- 43 Days of Schedule Reduction • \$62.5K Worth of GC Savings Major Reduction in site congestions Increased Safety, Quality • Less Waste

Recommendation

PREFABRICATION

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

 Pursue Prefabrication of Bathrooms in Area O • Met goals of reducing site congestions

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Analysis 4: Bathroom prefabrication Many Advantages: reduced Congestion, schedule, safety, quality

LESSONS LEARNED

PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Lessons learned

Analysis 1: Energy Model No cost to produce a design with less energy usage

Analysis 2: Photovoltaic Panels Sustainable Energy with a 7 year payback period

> Analysis 3: Structure modification Reduction in Schedule and Cost

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT

PRESENTATION OUTLINE:

- PROJECT BACKGROUND
- ANALYSIS #1: Energy Analysis II.
- III. ANALYSIS #2: Photovoltaic Array
- IV. ANALYSIS #3: Structural Modification
- V. ANALYSIS #4: Bathroom Prefabrication
- VI. LESSONS LEARNED
- VII. ACKNOWLEDGEMENTS

Family

Friends

AE Classmates

ACKNOWLEDGEMENT

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA

Pennsylvania State University AE Department

United Arab Emirates

H.H. Sheikh Khalifa Bin Zayed Mrs Abir Khater

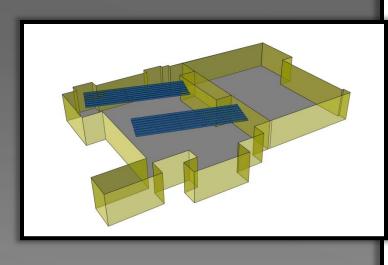
Dr. Moses Ling Dr. Chimay Anumba

Turner Construction Company

مكتب البعثات الدراسية Scholarships Office

ENERGY ANALYSIS

JAAFAR AL AIDAROOS | FIGHER UCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA


Thank You! Questions?

WEST FUALA PLANT EXPANSION Electric Loads & Layout

Summary of Calculations

System Covers 20% of the lighting system Annual Savings of \$29,591 on Electric Bill

Power Factor = 1.0 of Lighting system 134 kW / 650 kW = 20.615%

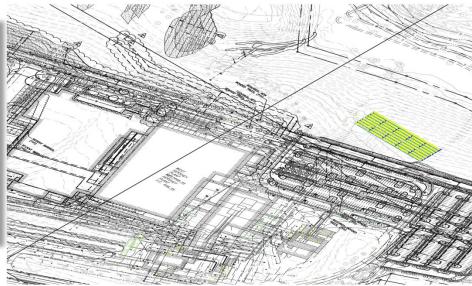
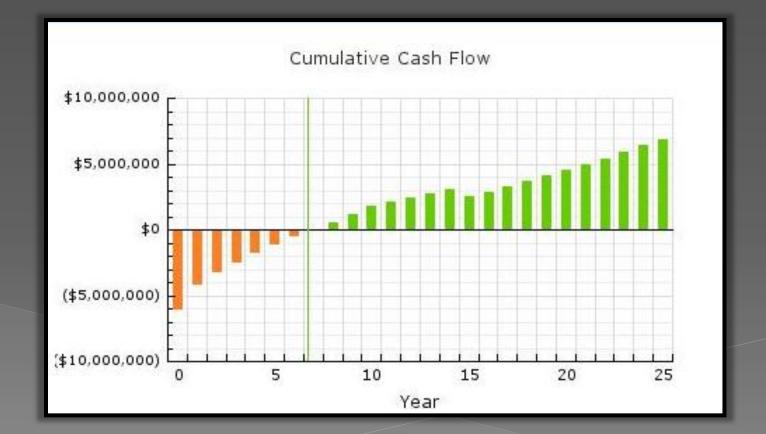
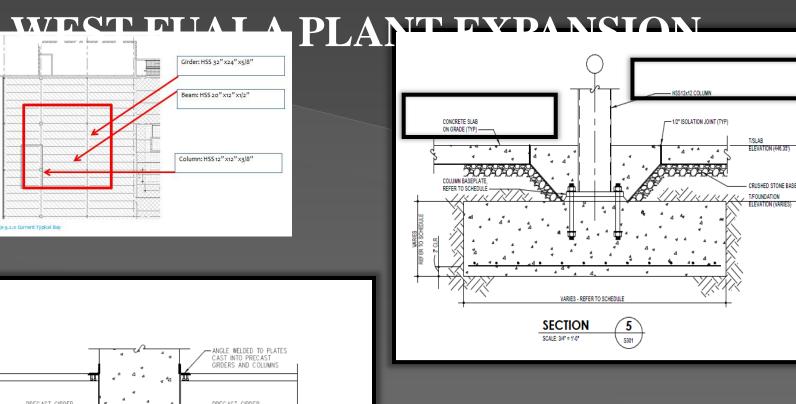


Table 8 Estimate FINANCI TOTAL S/ ESTIMATI COST AT INSTALLA

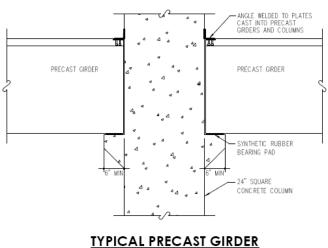
PHOTOVOLTAICS


JAAFAR AL AIDAROOS | GONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT ADVISOR: DR. CHIMAY ANUMBA


Photovoltaic Panels

System Cost per Watt: Cost of Astronergy System= \$1.97 per DC watt Gross Cost of installation = \$5 per DC watt (U.S. Dept of Energy)

.8.2:	Description	Monetary Values (\$)	COST
ed System Cost	Assumed Installation Gross Cost		\$8,771,723
CIAL INCENTIVES	Pennsylvania SREC Market	\$ 3,129,987	
	PA State SunShine Rebate	\$ 52,500	
	Federal Tax Credit	\$ 2,631,517	
AVINGS		(\$ 2,957,719)	
TED NET T ATION:			\$ 6,087,706


PENN STATE AE SENIOR CAPSTONE PROJECT JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT ADVISOR: DR. CHIMAY ANUMBA

System	Cost of erecting a typical bay	Cost per sqft	(32,251 SF)	Duration
Precast Concrete	\$71,760	\$70.10	\$ 2,260,795.10	35 Days
Steel	\$99,986	\$97.64	\$ 3,148,987.64	32.5 Days

PENN STATE AE SENIOR CAPSTONE PROJECT JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT ADVISOR: DR. CHIMAY ANUMBA

CONNECTION DETAIL

PRECAST CONCRETE

Changing the Structure of the Mezzanine Assumptions and parameters

Process equipment penetration were not known, so structure was switched to steel to prevent delay • There is enough space for minor design modification Typical Bay method fro calculations Maintain original design of mezzanine

JAAFAR AL AIDAROOS | GONSTRUCTION MANAGEMENT PENN STATE AE SENIOR CAPSTONE PROJECT

Typical Bay	Description	Cost (\$)	No. units	Total Cost	Loads
Girders	HSS 32" x 24" x 5/8"	310 /ft.	2	\$19,840	17.62 klf
	2'-0" wide x 3'-6" deep	185 /ft.		\$11,840	42.56 klf
Beams	HSS 20" x 12" x 1/2'	201 /ft.	7	\$45,024	2.8 klf
	1'-0" wide x 2'-0" deep	160 /ft.		\$35,840	4.3 klf
Slabs	CIP concrete	25 /sqft	1	\$25,600	90 psf
	Precast slab	20 /sqft		\$20,480	275 psf
Columns	HSS 12" x12" x 3/8"	259 /ft.	1	\$9,522	607 kips
	Precast Concrete 20" x 20"	200 /ft.		\$3,600	1577 kips

Breadth Work Precast Concrete Column Design

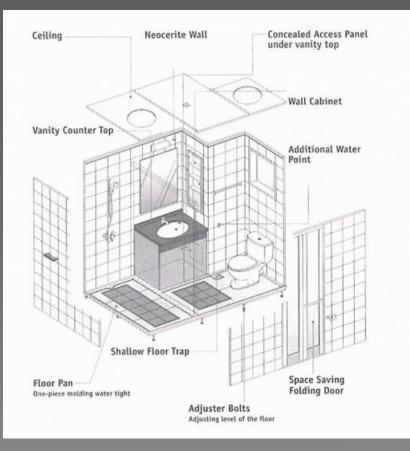
12"x12" HSS 20" x 20" Precast Concrete

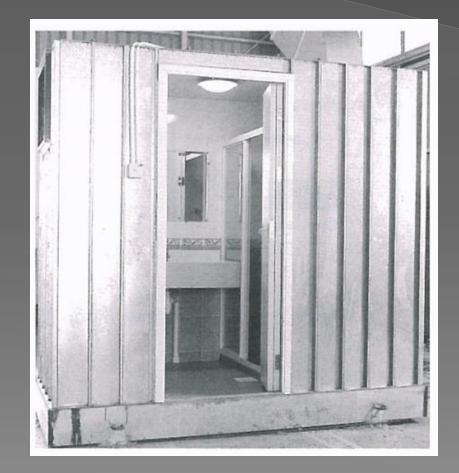
The Column will have to have the following properties:

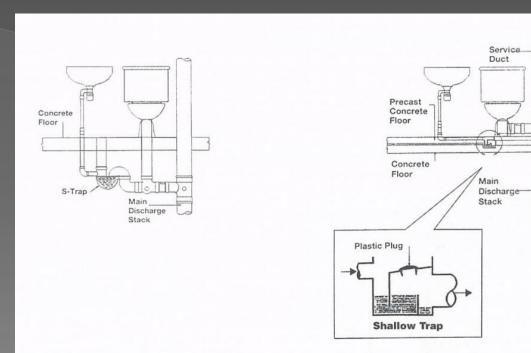
AS = 32 sq.inSteel ratio = 0.08 $f'c (ksi) = 4 \times 0.92 = 3.68$ $Fy (ksi) = 60 \times 0.08 = 4.8$ $Total = 8.48 \times 17$ ft x 12in/ft) = 1729.92 kips 8 No. 18 (US)

Ch	anging the Stru	Typical Bay	Description	Cost (\$)	No. units	Total Cost	Loads			
Assumptions and parameters					Girders	HSS 32" x 24" x 5/8"	310 /ft.	2	\$19,840	17.62 klf
 Process equipment penetration were not known, so 						2'-0" wide x 3'- 6" deep	185 /ft.		\$11,840	42.56 klf
 structure was switched to steel to prevent delay There is enough space for minor design modification Typical Bay method fro calculations Maintain original design of mezzanine 				Beams HSS 20" x 12" 201 /ft. x 1/2' x 1/2' x 1/2'			7	\$45,024	2.8 klf	
					1'-0" wide x 2'- 0" deep	160 /ft.		\$35,840	4.3 klf	
	3				Slabs	Slabs CIP concrete	25 /sqft	1	\$25,600	90 psf
System	Cost of erecting a	Cost per sqft	(32,251 SF)	Duration		Precast slab	20 /sqft		\$20,480	275 psf
	typical bay		Columns	HSS 12" x12" x 3/8"	259 /ft.	1	\$9,522	607 kips		
Precast Concrete					Precast		200 /ft.	\$3,600	1577 kips	
	Steel \$99,986 \$97.64 \$ 3,148,987.64 32.5 Days PENN STATE AE SENIOR CAPSTONE PROJECT					Concrete 20" x 20"				

JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT ADVISOR: DR. CHIMAY ANUMBA


PRECAST CONCRETE


PENN STATE AE SENIOR CAPSTONE PROJECT


JAAFAR AL AIDAROOS | GONSTRUCTION MANAGEMENT

Finishes installed to walls on site and then hoisted into place

Finishes and wall preassembled in factory. Delivered and hoisted

PREFABRICATION

JAAFAR AL AIDAROOS | CONSTRUCTION MEANAGEMEN PENN STATE AE SENIOR CAPST DNE PROJECT ADVISOR: DR. CHIMAY ANU MBA

PENN STATE AE SENIOR CAPSTONE PROJECT JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT ADVISOR: DR. CHIMAY ANUMBA

•Contingency pipes should be cast in structural Slabs as an outlet pipe for seepage

•Electrical service shall also be connected to the main switch

•Gap in the between bathroom and structural slab will be packed with non-shrink grout around perimeters

PRESENTATION OWNEST FUALA PLANT EXPANSION

- PROJECT BACKGROUND
- II. ANALYSIS #1: Energy Analysis
 - Conceptual Design
 - II. Energy Model
 - III. Solar Analaysis
 - I. Solar Studies
 - II. Ecotect Solar Radiation
 - IV. Application to Energy Model
 - V. Recommendations
- III. ANALYSIS #2: Photovoltaic Array
 - Electrical Systems Analysis
 - II. Solar Analysis
 - III. PV systems
 - IV. Layout
 - V. Electrical Energy production
 - VI. Financial Analysis
 - VII. Recommendation

West Fuala Plant Expansion Abu Dhabi, PA

Bathroom Prefabrication

PENN STATE AE SENIOR CAPSTONE PROJECT Steel load Calculation

PENN STATE AE SENIOR CAPSTONE PROJECT JAAFAR AL AIDAROOS | CONSTRUCTION MANAGEMENT ADVISOR: DR. CHIMAY ANUMBA

JAAFAR AL AIDAROOS | GONSTRUCTION MANAGEMENT ADVISOR: DR. CHIMAY ANUMBA